As light changes, a red apple in a fruit bowl retains its redness. This happens because our experience of color depends on something more than the wavelength information received by the cones in our retina. That something more is the surrounding context. If you view only part of a red apple, its color will seem to change as the light changes. But if you see the whole apple as one item in a bowl of fresh fruits, its color will remain roughly constant as the lighting and wavelengths shift—a phenomenon known as color constancy. Dorothea Jameson (1985) noted that a chip colored blue under indoor lighting matches the wavelengths reflected by a gold chip in sunlight. Yet bring a bluebird indoors and it won’t look like a goldfinch. Likewise, a green leaf hanging from a brown branch may, when the illumination changes, reflect the same light energy that formerly came from the brown branch. Yet to us the leaf stays greenish and the branch stays brownish.
Though we take color constancy for granted, the phenomenon is truly remarkable. It demonstrates that our experience of color comes not just from the object—the color is not in the isolated leaf—but from everything around it as well. You and I see color thanks to our brains’ computations of the light reflected by any object relative to its surrounding objects. But only if we grew up with normal light, it seems. Monkeys raised under a restricted range of wavelengths later have great difficulty recognizing the same color when illumination varies.(1)
(1) Psychology, David G Myers
(2) Current Biology Vol 17 No 21
(2) Current Biology Vol 17 No 21
No comments:
Post a Comment